
2-Arithmatic Operations
Binary Arithmetic

 We are very familiar with different arithmetic operations, viz. addition,

subtraction, multiplication, and division in a decimal system. Now we want to
find out how those same operations may be performed in a binary system,

where only two digits, viz. 0 and 1 exist.

 -Binary Addition it is a key for binary subtraction, multiplication, division. There four

rules of
 the binary addition.

 In fourth case, a binary addition is creating a sum of (1+1=10) i.e. 0 is

write in
 the given column and a carry of 1 over to the next column.

 Exp1:

- Binary Subtraction
 Subtraction and Borrow, these two words will be used very

frequently for the binary subtraction. There four rules of the binary

subtraction. There four rules of the binary subtraction.

 Exp:

- Binary Multiplication
 Binary multiplication is similar to decimal multiplication. It is

simpler than decimal multiplication because only 0s and 1s are
involved. There four rules of the binary multiplication.

Exp:

- Binary Division
 Binary division is similar to decimal division.where, the division of two
digits is as follows:

case A ÷ B Division

1 1 ÷ 1 1

2 0 ÷ 1 0

It is called as the long division procedure.

 Home work :

 1- (11110)2 +(1100)2 = (?)2 , 2-(1011101)2 +(1001011)2=(?)2 , 3-(110)2

+(101)2+(10)2=(?)2

 4-(10011)2 -(1001)2 = (?)2 , 5- (110.1)2 -(100.1o)2 = (?)2 , 6- (111)2 - (100)2 -

(01)2=(?)2

 7- (101101)2 * (10101)2 = (?)2 , 8- (101.01)2 * (11.01)2 = (?)2 , 9- (110)2 * (11)2 * (01)2 =

(?)2

 10- (1100)2 ÷ (11)2 = (?)2 , 11- (1011010)2 ÷ (11)2 = (?)2 , 12- (1100101)2 ÷ (100)2 =

(?)2

#Octal Arithmetic
 This section describes octal arithmetic operations addition and
subtraction.
 Quick Preview :the following are the characteristics of an octal number

system.
 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system

 Each position in a octal number represents a 0 power of the base (8). Example

80

 Last position in a octal number represents a x power of the base (8). Example 8x

where

x represents the last position - 1.

 Example: Octal Number: 125708 , Calculating Decimal Equivalent:

 Step1: 125708 = ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10

 Step2: 125708 = (4096 + 1024 + 320 + 56 + 0)10

 Step3: 125708 = 549610

 Note: 125708 is normally written as 12570.

- Octal Addition
 Following octal addition table will help you greatly to handle Octal addition.

 To use this table, simply follow the directions used in this example: Add: 68 and 58.Locate 6 in the
A column then locate the 5 in the B column. The point in sum area where these two columns intersect
is the sum of two numbers. 68 + 58 = 138.

 Example:

- Octal Subtraction
The subtraction of octal numbers follows the same rules as the subtraction of
numbers in any other number system. The only variation is in borrowed

number. In the decimal system, you borrow a group of 1010. In the binary
system, you borrow a group of 210. In the octal system you borrow a group of

810.

 Home work :

 1- (123)8 +(65)8 = (?)8 , 2-(1740)8 +(1234)8=(?)8 , 3-(16)8 +(23)8+(10)8=(?)8

 4-(356)8 - (43)8 = (?)8 , 5- (4457)8 -(3210)8 = (?)8 , 6-(123)8 - (65)8 - (12)8
= (?)8

Hexadecimal Arithmetic
 This section describes hexadecimal arithmetic operations addition and
subtraction.

 Quick Preview :the following are the characteristics of a hexadecimal number system.

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15.

 Also called base 16 number system

 Each position in a hexadecimal number represents a 0 power of the base (16). Example 160

 Last position in a hexadecimal number represents a x power of the base (16). Example 16xwhere x
represents the last
position - 1.

Example:
 Hexadecimal Number: 19FDE16 Calculating Decimal Equivalent:

 Step1: 19FDE16 = ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10

 Step2: 19FDE16 =((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10

 Step3: 19FDE16 =(65536+ 36864 + 3840 + 208 + 14)10

 Step4: 19FDE16 =10646210

 Note: 19FDE16 is normally written as 19FDE.

 -Hexadecimal Addition
 Following hexadecimal addition table will help you greatly to handle
Hexadecimal addition.

To use this table, simply follow the directions used in this example: Add: A16

and 516.Locate A in the X column then locate the 5 in the Y column. The point

in sum area where these two columns intersect is the sum of two numbers.
 A16 + 516 = F16.

Example:

-Hexadecimal Subtraction

 The subtraction of hexadecimal numbers follows the same rules as the

subtraction of numbers in any other number system. The only variation is in
borrowed number. In the decimal system, you borrow a group of 1010. In the

binary system, you borrow a group of 210. In the hexadecimal system you
borrow a group of 1610.

Example:

 Home work :

 1- (5AE)16 +(94B)16 = (?)16 , 2-(52EB)16 +(1234)16=(?)16 , 3-(10)16

+(20)16+(11)16=(?)16

 4-(FE)16 - (37)16 = (?)16 , 5- (BC66)16 -(2F3)16 = (?)16 , 6-(123)16 - (65)16 - (12)16
=(?)16

3-Representing Negative Numbers

In the “real world” of mathematics, computers must represent both positive
and negative binary numbers. For example, even when dealing with positive

arguments, mathematical operations may produce a negative result:

– Example: 124 – 237 = –113.

• Thus needs to be a consistent method of representing negative numbers in
binary computer arithmetic operations.

• Basically there are three types of representations of signed binary

numbers— sign-magnitude representation, 1’s complement representation,
and 2’scomplement representations, which are discussed below.

1- Sign-magnitude representation.
 In decimal system, generally a plus (+) sign denotes a positive number

whereas a minus (–) sign denotes a negative number. But, the plus sign is
usually dropped, and nosign means the number is positive. This type of

representation of numbers is known as signed numbers.

 But in digital circuits, there is no provision to put a plus or minus sign, since
everything in digital circuits have to be represented in terms of 0 and 1.

Normally an additional bit is used as the sign bit. This sign bit is usually placed
as the MSB. Generally a 0 is reserved for a positive number and a 1 is reserved

for a negative number.

 For example, an 8-bit signed binary number 01101001 represents a positive

number whose magnitude is (1101001)2 = (105)10. The MSB is 0, which
indicates that the number is positive. On the other hand, in the signed binary

form, 11101001 represents a negative number whose magnitude is
(1101001)2 = (105)10. The 1 in the MSB position indicates that the number

is negative and the other seven bits give its magnitude. This kind of
representation of binary numbers is called sign-magnitude representation.

Example :

Signed Integer Sign Magnitude

+2 0000 0010

+1 0000 0001

0 0000 0000

-1 1000 0001

-2 1000 0010

 The drawbacks :to using this method for arithmetic computation are that a

different set of rules are required and that zero can have two
representations (+0, 0000 0000 and -0, 1000 0000).

 Example 1.36. Find the decimal equivalent of the following binary numbers
assuming the binary numbers have been represented in sign-magnitude form.

 (a) 0101100 (b) 101000 (c) 1111 (d) 011011
Solution.

 (a) Sign bit is 0, which indicates the number is positive.
 Magnitude 101100 = (44)10 , Therefore (0101100)2 = (+44)10.
 (b) Sign bit is 1, which indicates the number is negative.

 Magnitude 01000 = (8) 10 , Therefore (101000) 2 = (–8) 10.
 (c) Sign bit is 1, which indicates the number is negative.

 Magnitude 111 = (7) 10 , Therefore (1111) 2 = (–7) 10.
 (d) Sign bit is 0, which indicates the number is positive.
 Magnitude 11011 = (27) 10 , Therefore (011011) 2 = (+27) 10.

 ??? What Complements mean ?
 complements are used in the digital computers in order to simplify the

subtraction operation and for the logical manipulations. For each radix-r
system (radix r represent base of number system) there are two types of

complements

s.n Complement Description

1 Radix Complement The radix complement is referred to as the r's complemen

1 Diminished Radix
Complement

The diminished radix complement is referred to as the (r-
1)'s complement

 There for in Binary system complements has base r = 2. So the two types

of complements for the binary system are
following:

 # 1' complement

Sign bit

 The 1's complement of a number is found by changing all 1's to 0's

and all 0's to 1's. This is called as taking complement or 1's complement.

 Example:

 ones' complement can be used to represent negative numbers. The ones'

complement form of a negative binary number is the complement of its
positive counterpart, which can be obtained by applying the NOT to the

positive counterpart. Like sign-magnitude representation, ones' complement
has two representations of 0: 00000000 (+0) and 11111111 (−0).

As an example, the ones' complement of 00101011 (43) is 11010100 (−43).

Note: The range of signed numbers using ones' complement in a conventional

8-bit byte is −127 to +127.

Signed integer Unsigned integer 8 bit ones' complement

0 0 00000000

1 1 00000001

….... ……. ……

125 125 01111101

126 126 01111111

-127 128 10000000

-126 129 10000001

-125 130 10000010

….... ……. ……

-1 245 11111110

-0 255 11111111

 + 1's Complement Addition
 To add two numbers represented in this system, we use the conventional

binary addition, but it is then necessary to add any resulting carry back
into the resulting sum. To see why this is necessary, consider the following

example showing the case of the addition of −1 (11111110) to +2 (00000010).

Example: perform (7-3) using 1's complements method ?

 Decimal binary

 7 --- 111 ---- 111

 - 3 --- 011 + 100

 1 011

 + 1

 100 the result

 Example: perform (8-12) using 1's complements method ?
 Decimal binary

 8 - 1000 -- 1000
 - 12 - 1100 -- + 0011

 _________ _______

 - 4 1011

2' complement

 The 2's complement of binary number is obtained by adding 1 to the

Least Significant Bit (LSB) of 1's complement of the number.

 Note: 2's complement = 1's complement + 1

 Example of 2's Complement is as follows.

 The Two's complement representation allows the use of binary arithmetic

operations on signed integers, yielding the correct 2's complement results.

Positive Numbers
 Positive 2's complement numbers are represented as the simple binary.

Negative Numbers
 Negative 2's complement numbers are represented as the binary number
that when added to a positive number of the same magnitude equals zero.

Integer 2's

Complement Signed Signed

Note: The most significant (leftmost) bit indicates the sign of the integer;
therefore it is sometimes called the sign bit.

If the sign bit is zero,

then the number is greater than or equal to zero, or positive.

If the sign bit is one,
then the number is less than zero, or negative.

+ Calculation of 2's Complement
 To calculate the 2's complement of an integer, invert the binary equivalent

of the number by changing all of the ones to zeroes and all of the zeroes to
ones (also called 1's complement), and then add one.

Notes: The addition of n-bit signed binary numbers is straightforward using the 2’s
complement system. The addition is carried out just as if all the numbers were
positive, and any carry from the sign position is ignored. This will always yield
the correct result except when an overflow occurs. When the word length is n bits, we say
that an overflow has occurred if the correct representation of the sum (including sign)
requires more than n bits.

5 5 0000 0101

4 4 0000 0100

3 3 0000 0011

``2 2 0000 0010

1 1 0000 0001

0 0 0000 0000

-1 255 1111 1111

-2 254 1111 1110

-3 253 1111 1101

-4 252 1111 1100

-5 251 1111 1011

 For example:

 17 -17

 0001 0001(binary 17) 1110 1111(two's complement -17)

NOT(0001 0001) = 1110 1110 (Invert bits)

1110 1110 + 0000 0001 = 1110 1111 (Add 1)

Home work :Now you try some :Find the two's complement for
 a. - 11

 b. - 43

 c. - 123

+ 2's Complement Addition
 Two's complement addition follows the same rules as binary addition.

 For example:
5 + (-3) = 2 0000 0101 = +5

 + 1111 1101 = -3

 0000 0010 = +2

+ 2's Complement Subtraction
 Two's complement subtraction is the binary addition of the minuend to

the 2's complement of the subtrahend (adding a negative number is the
same as subtracting a positive one).

 For example:
7 - 12 = (-5) 0000 0111 = +7

+ 1111 0100 = -12

 1111 1011 = -5

 Note: this suggests a new way to subtract in binary due to the fact that
subtraction is defined in the following manner :

x-y= x+ (-y)

Home work :Now you try some : subtract each , as a computer out

, using a binary code using registers of size 8 :
 a. 26 -15

 b. – 31 - 6
 c. 144 – 156

 d. make up your own exercises as needed

