
2-Arithmatic Operations  
# Binary  Arithmetic  

      We are very familiar with different arithmetic operations, viz. addition, 

subtraction, multiplication, and division in a decimal system. Now we want to 
find out how those same operations may be performed in a binary system, 

where only two digits, viz. 0 and 1 exist. 
      

   -Binary  Addition           it is a key for binary subtraction, multiplication, division. There four 

rules of   
     the binary addition. 

 

           In fourth case, a binary addition is creating a sum of (1+1=10) i.e. 0 is 

write in 
     the given column and a carry of 1 over to the next column. 

       Exp1: 
 

 
 

- Binary Subtraction 
                     Subtraction and Borrow, these two words will be used very 

frequently for the binary subtraction. There four rules of  the binary 

subtraction. There four rules of the binary subtraction. 

 
    Exp: 

 



 

 

 

 
- Binary Multiplication 
                      Binary multiplication is similar to decimal multiplication. It is 

simpler than decimal multiplication because only 0s and 1s are 
involved. There four rules of the binary multiplication. 

 
Exp: 
 

 
 

- Binary Division 
           Binary division is similar to decimal division.where, the division of two 
digits is as follows:               

case A ÷ B Division 

1 1 ÷ 1  1 

2 0 ÷ 1 0 

   

It is called as the long division procedure.   
 



 
 
 
 
 
 

   Home work : 

 1- (11110)2 +(1100)2 = (?)2  ,   2-(1011101)2 +(1001011)2=(?)2    ,     3-(110)2 

+(101)2+(10)2=(?)2 

  4-(10011)2 -(1001)2 = (?)2      ,        5- (110.1)2 -(100.1o)2 = (?)2            ,              6- (111)2 - (100)2 - 

(01)2=(?)2 

 7- (101101)2 * (10101)2 = (?)2   ,   8- (101.01)2  * (11.01)2 = (?)2        ,               9- (110)2 * (11)2 * (01)2 = 

(?)2 

 10- (1100)2  ÷ (11)2 = (?)2      ,   11- (1011010)2  ÷ (11)2 = (?)2      ,      12- (1100101)2  ÷ (100)2 = 

(?)2        

#Octal Arithmetic 
       This section describes octal arithmetic operations addition and 
subtraction. 
           Quick Preview :the following are the characteristics of an octal number 

system. 
 Uses eight digits, 0,1,2,3,4,5,6,7. 

 Also called base 8 number system 

 Each position in a octal number represents a 0 power of the base (8). Example 

80 

 Last position in a octal number represents a x power of the base (8). Example 8x 

where 

x represents the last position - 1. 

       

    Example:   Octal Number: 125708     ,  Calculating Decimal Equivalent: 
 
        Step1:   125708 =  ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10 



        Step2:   125708 =  (4096 + 1024 + 320 + 56 + 0)10 

        Step3:   125708 =  549610   

 

      Note: 125708 is normally written as 12570. 

  

- Octal Addition 
    Following octal addition table will help you greatly to handle Octal addition. 

 
         To use this table, simply follow the directions used in this example: Add: 68 and 58.Locate 6 in the 
A column then locate the 5 in the B column. The point in sum area where these two columns intersect 
is the sum of two numbers.  68 + 58 = 138. 

       Example:  

 

 
  

- Octal Subtraction 
The subtraction of octal numbers follows the same rules as the subtraction of 
numbers in any other number system. The only variation is in borrowed 

number. In the decimal system, you borrow a group of 1010. In the binary 
system, you borrow a group of 210. In the octal system you borrow a group of 

810. 
 

 



 
 
 

 Home work : 

       1- (123)8 +(65)8 = (?)8     ,       2-(1740)8 +(1234)8=(?)8      ,        3-(16)8 +(23)8+(10)8=(?)8 

           4-(356)8 - (43)8 = (?)8      ,          5- (4457)8 -(3210)8 = (?)8      ,      6-(123)8 - (65)8 - (12)8 
= (?)8 

# Hexadecimal Arithmetic 
 This section describes hexadecimal arithmetic operations addition and 
subtraction. 

 
    Quick Preview :the following are the characteristics of a hexadecimal number system. 

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. 

 Letters represents numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15. 

 Also called base 16 number system 

 Each position in a hexadecimal number represents a 0 power of the base (16). Example 160 

 Last position in a hexadecimal number represents a x power of the base (16). Example 16xwhere x 
represents the last      
position - 1. 

Example: 
     Hexadecimal  Number: 19FDE16 Calculating Decimal Equivalent: 
    
       Step1: 19FDE16 = ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10 

       Step2: 19FDE16 =((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10 

       Step3: 19FDE16 =(65536+ 36864 + 3840 + 208 + 14)10 

       Step4: 19FDE16 =10646210 

 

 Note: 19FDE16 is normally written as 19FDE. 

 

   -Hexadecimal Addition 
              Following hexadecimal addition table will help you greatly to handle 
Hexadecimal addition.  

 
To use this table, simply follow the directions used in this example: Add: A16 

and 516.Locate A in the X column then locate the 5 in the Y column. The point 

in sum area where these two columns intersect is the sum of two numbers. 
 A16 + 516 = F16. 

 



 

 
         
 
Example: 

 

 
-Hexadecimal Subtraction 
 

        The subtraction of hexadecimal numbers follows the same rules as the 

subtraction of numbers in any other number system. The only variation is in 
borrowed number. In the decimal system, you borrow a group of 1010. In the 

binary system, you borrow a group of 210. In the hexadecimal system you 
borrow a group of 1610. 
 
Example:  

 
 



 Home work : 

       1- (5AE)16 +(94B)16 = (?)16     ,    2-(52EB)16 +(1234)16=(?)16    ,     3-(10)16 

+(20)16+(11)16=(?)16 

           4-(FE)16 - (37)16 = (?)16      ,          5- (BC66)16 -(2F3)16 = (?)16    ,   6-(123)16 - (65)16 - (12)16 
=(?)16 

 

3-Representing Negative Numbers 

In the “real world” of mathematics, computers must represent both positive 
and negative binary numbers. For example, even when dealing with positive 

arguments, mathematical operations may produce a negative result: 

 
– Example: 124 – 237 = –113. 

• Thus needs to be a consistent method of representing negative numbers in 
binary computer arithmetic operations. 

 
• Basically there are three types of representations of signed binary 

numbers— sign-magnitude representation, 1’s complement representation, 
and 2’scomplement representations, which are discussed below. 

 

1- Sign-magnitude representation. 
       In decimal system, generally a plus (+) sign denotes a positive number     

whereas a minus (–) sign denotes a negative number. But, the plus sign is 
usually dropped, and nosign means the number is positive. This type of 

representation of numbers is known as signed numbers. 
 

   But in digital circuits, there is no provision to put a plus or minus sign, since 
everything in digital circuits have to be represented in terms of 0 and 1. 

Normally an additional bit is used as the sign bit.  This sign bit is usually placed 
as the MSB. Generally a 0 is reserved for a positive number and a 1 is reserved 

for a negative number. 
 

 For example, an 8-bit signed binary number 01101001 represents a positive 

number whose magnitude is (1101001)2 = (105)10.  The MSB is 0, which 
indicates that the number is positive. On the other hand, in the signed binary 

form, 11101001 represents a negative number whose magnitude is 
(1101001)2 = (105)10. The 1 in the MSB position indicates that the number 

is negative and the other seven bits give its magnitude. This kind of 
representation of binary numbers is called sign-magnitude representation. 

 



 
Example : 

Signed Integer Sign Magnitude 

+2 0000 0010 

+1 0000 0001 

0 0000 0000 

-1 1000 0001 

-2 1000 0010 

 

 The drawbacks :to using this method for arithmetic computation are that a 

different set of rules are required and that zero can have two 
representations (+0, 0000 0000 and -0, 1000 0000). 
 

  Example 1.36. Find the decimal equivalent of the following binary numbers 
assuming the binary numbers have been represented in sign-magnitude form. 

     (a) 0101100     (b) 101000    (c) 1111       (d) 011011 
Solution. 

    (a) Sign bit is 0, which indicates the number is positive. 
          Magnitude 101100 = (44)10   , Therefore (0101100)2 = (+44)10. 
   (b) Sign bit is 1, which indicates the number is negative. 

         Magnitude 01000 = (8) 10  , Therefore (101000) 2 = (–8) 10. 
   (c) Sign bit is 1, which indicates the number is negative. 

         Magnitude 111 = (7) 10 , Therefore (1111) 2 = (–7) 10. 
   (d) Sign bit is 0, which indicates the number is positive. 
         Magnitude 11011 = (27) 10  , Therefore (011011) 2 = (+27) 10. 

 

   ??? What Complements mean ? 
         complements are used in the digital computers in order to simplify the 

subtraction operation and for the logical manipulations. For each radix-r 
system (radix r represent base of number system) there are two types of 

complements 
 

s.n   Complement Description 

1 Radix Complement  The radix complement is referred to as the r's complemen 

1 Diminished Radix 
Complement 

The diminished radix complement is referred to as the (r-
1)'s complement 

   There for in Binary system complements has base r = 2. So the two types 

of complements for the binary system are 
following: 

   # 1' complement 

Sign bit 



        The 1's complement of a number is found by changing all 1's to 0's 

and all 0's to 1's. This is called as taking  complement or 1's complement. 
        
 Example: 
 
 

 

 

     ones' complement can be used to represent negative numbers. The ones' 

complement form of a negative binary number is the complement of its 
positive counterpart, which can be obtained by applying the NOT to the 

positive counterpart. Like sign-magnitude representation, ones' complement 
has two representations of 0: 00000000 (+0) and 11111111 (−0). 

 
As an example, the ones' complement of 00101011 (43) is 11010100 (−43). 

 
Note: The range of signed numbers using ones' complement in a conventional 

8-bit byte is −127  to  +127. 

 

Signed integer Unsigned integer 8 bit ones' complement 

0 0 00000000 

1 1 00000001 

….... ……. …… 

125 125 01111101 

126 126 01111111 

-127 128 10000000 

-126 129 10000001 

-125 130 10000010 

….... ……. …… 

-1 245 11111110 

-0 255 11111111 

 

                + 1's Complement Addition 
 To add two numbers represented in this system, we use the conventional 

binary addition, but it is then necessary to add any resulting carry back 
into the resulting sum. To see why this is necessary, consider the following 

example showing the case of the addition of −1 (11111110) to +2 (00000010). 
 

Example: perform (7-3) using 1's complements method ? 



        Decimal      binary  

       7      ---  111    ----   111  

    -  3     ---   011            + 100 

    ___________________________ 
                              1  011 

                   +   1 
               _______ 

                    100  the result      
    

   Example: perform (8-12) using 1's complements method ? 
          Decimal      binary  

         8     -     1000   --     1000 
         -  12   -      1100   -- +  0011 

         _________                      _______ 

          -  4                                   1011 
    

#  2' complement  

                    The 2's complement of binary number is obtained by adding 1 to the 

Least Significant Bit (LSB) of 1's complement of  the number.      

    
     Note: 2's complement = 1's complement + 1 

       Example of 2's Complement is as follows. 

 

 

 

 

 

 

       The Two's complement representation allows the use of binary arithmetic 

operations on signed integers, yielding the correct 2's complement results. 

 

Positive Numbers 
    Positive 2's complement numbers are represented as the simple binary. 

 
Negative Numbers 
    Negative 2's complement numbers are represented as the binary number 
that when added to a positive number of the same magnitude equals zero. 

 

Integer 2's 

Complement Signed Signed 



 

 
Note: The most significant (leftmost) bit indicates the sign of the integer; 
therefore it is sometimes called the sign bit. 

 
If  the sign bit is zero, 

then  the number is greater than or equal to zero, or positive. 
 

If  the sign bit is one, 
then  the number is less than zero, or negative. 

 

+ Calculation of 2's Complement 
     To calculate the 2's complement of an integer, invert the binary equivalent 

of the number by changing all of the ones to zeroes and all of the zeroes to 
ones (also called 1's complement), and then add one. 

 
Notes: The addition of n-bit signed binary numbers is straightforward using the 2’s 
complement  system. The addition is carried out just as if all the numbers were 
positive, and any carry from the sign position is ignored. This will always yield 
the correct result except when an overflow occurs. When the word length is n bits, we say 
that an overflow has occurred if the correct representation of the sum (including sign) 
requires more than n bits. 

 

5 5 0000 0101 

4 4 0000 0100 

3 3 0000 0011 

``2 2 0000 0010 

1 1 0000 0001 

0 0 0000 0000 

-1 255 1111 1111 

-2 254 1111 1110 

-3 253 1111 1101 

-4 252 1111 1100 

-5 251 1111 1011 



 

 

   For example: 

 
            17                          -17 

   0001 0001(binary 17)     1110 1111(two's complement -17) 
 

NOT(0001 0001) = 1110 1110 (Invert bits) 
 

1110 1110 + 0000 0001 = 1110 1111 (Add 1) 
 

 

Home work :Now you try some :Find the two's complement for  
         a. - 11 

         b. - 43 

         c. - 123 

 

+ 2's Complement Addition 
    Two's complement addition follows the same rules as binary addition. 

 

  For example: 
5 + (-3) = 2    0000 0101 = +5 

                 +  1111 1101 = -3 
          _____________ 

                       0000 0010 = +2 
 

 

+ 2's Complement Subtraction 
     Two's complement subtraction is the binary addition of the minuend to 

the 2's complement of the  subtrahend (adding a negative number is the 
same as subtracting a positive one). 

 
 

 For example: 
7 - 12 = (-5)      0000 0111 = +7 

+  1111 0100 = -12 
_________________ 

    1111 1011 = -5 
 

  Note: this suggests a new way to subtract in binary due to the fact that 
subtraction is defined in the following manner : 

 

x-y= x+ (-y) 



 

 

 

Home work :Now you try some : subtract each , as a computer out 

, using a binary code using registers of size  8 : 
         a.  26 -15 

         b. – 31 - 6 
         c. 144 – 156 

         d. make up  your own exercises as needed   

 

 


